作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
持续一年的新冠疫情对全球的经济造成了巨大破坏, 为了有效控制新冠疫情, 快速检测新冠病毒(SARS-CoV-2)是一个急需解决的问题。 新冠病毒的刺突蛋白(spikeprotein)是拉曼光谱技术检测新冠病毒的检测点, 构建刺突蛋白拉曼特征峰模型对于发展拉曼检测技术快速检测新冠病毒具有重要作用。 基于简化的激子模型, 利用深度神经网络技术, 构建了刺突蛋白的酰胺Ⅰ、 Ⅲ特征峰模型, 并结合已知可以感染人类的七种冠状病毒(HCoV-229E, HCoV-HKU1, HCoV-NL63, HCoV-OC43, MERS-CoV, SARS-CoV和SARS-CoV-2)刺突蛋白的实验结构, 分析了七种冠状病毒刺突蛋白酰胺Ⅰ、 Ⅲ特征峰的区别。 计算结果表明, 七种冠状病毒可以根据毒刺突蛋白的酰胺Ⅰ、 Ⅲ特征峰划分为四个组: SARS-CoV-2, SARS-CoV, MERS-CoV形成一个组; HCoV-HKU1, HCoV-NL63形成一个组; HCoV-229E和HCoV-OC43各自独立形成一个组。 相同组的冠状病毒刺突蛋白酰胺Ⅰ、 Ⅲ峰频率较为接近, 通过酰胺Ⅰ、 Ⅲ峰的频率较难区分刺突蛋白; 不同组的冠状病毒刺突蛋白酰胺Ⅰ、 Ⅲ特征峰差异较大, 刺突蛋白可以通过拉曼技术区分开来。 该结果为发展拉曼检测技术快速检测新冠病毒提供了定性判断的理论依据。
冠状病毒 刺突蛋白 拉曼光谱 酰胺Ⅰ、 Ⅲ峰; 深度学习 Coronavirus Spike protein Raman spectrum Amide Ⅰ Ⅲ peak; Deep learning 
光谱学与光谱分析
2022, 42(9): 2757
作者单位
摘要
贵州大学土木工程学院,贵阳 550025
以不掺塑钢纤维的磷渣混凝土为基准,对纤维长度为30 mm、40 mm、55 mm和纤维掺量为3 kg/m3、6 kg/m3、9 kg/m3的塑钢纤维磷渣混凝土进行四点弯曲试验,研究不同纤维长度和纤维掺量对磷渣混凝土弯曲性能的影响规律。研究结果表明:随着塑钢纤维长度和掺量的增加,磷渣混凝土的抗弯强度随之增加,塑钢纤维长度为55 mm,掺量为3 kg/m3时,对磷渣混凝土抗弯强度增强效果最佳,抗弯强度比基准组提高了56%;随着塑钢纤维长度和掺量的增加,磷渣混凝土弯曲韧性指数不断增大,弯曲韧性不断提高,塑钢纤维长度为55 mm,掺量为9 kg/m3时,弯曲韧性指数I20比基准组提高了9.8倍。
塑钢纤维 磷渣混凝土 弯曲性能 弯曲韧性 弯曲韧性指数 四点弯曲 plastic steel fiber phosphorus slag concrete bending strength bending toughness bending toughness index four-point bending 
硅酸盐通报
2022, 41(1): 218
乐玮 1黄景林 1羊强 2祁道健 1[ ... ]杜凯 1,*
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院, 四川 绵阳 621900
3 等离子体物理重点实验室, 四川 绵阳 621900
表面增强拉曼光谱技术因其高灵敏度、操作简单、快速检测等优点,被广泛用于病毒检测方面。国内外的病毒拉曼检测研究主要集中在检测病毒核酸以及组成核酸的各种碱基的表面增强拉曼光谱(SERS),但少见对病毒蛋白的SERS检测。以新型冠状病毒(SARS-CoV-2)的S蛋白为检测对象,采用无标记SERS检测方法,对比SARS-CoV-2固态、饱和液态S蛋白的普通拉曼光谱和选用40 nm金纳米粒子为基底的SARS-CoV-2低浓度S蛋白SERS光谱。结果表明,以40 nm金纳米粒子为基底,采用SERS技术检测SARS-CoV-2的S蛋白是完全可行的。SARS-CoV-2的S蛋白分子中的羧基与金纳米粒子发生了分子增强,氨基与金纳米粒子发生了电磁增强,从而使得SARS-CoV-2的S蛋白拉曼效应得到了增强,并使得峰位发生一定移动。实验获得了较好的SARS-CoV-2低浓度S蛋白SERS光谱,为建立敏感、特异、快速的SARS-CoV-2检测新技术提供了一种方法。
表面增强拉曼光谱技术 新型冠状病毒 金纳米粒子 蛋白质 相互作用 surface-enhanced Raman spectroscopy technology severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gold nanoparticles protein interaction 
强激光与粒子束
2021, 33(11): 119001
作者单位
摘要
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
开发具有高灵敏度、高准确性的新型冠状病毒(SARS-CoV-2)快速检测技术对疫情防控具有重要作用。本文利用表面增强拉曼光谱(SERS)技术对人体唾液中的痕量SARS-CoV-2病毒刺突蛋白(S蛋白)进行了检测。结果表明,含S蛋白的唾液样本与原始唾液样本的拉曼光谱具有显著区别,含S蛋白的唾液样本谱图中可清晰观察到属于S蛋白的拉曼谱线。该结果为后续SERS技术在SARS-CoV-2病毒快速检测方面的应用奠定了坚实基础。
表面增强拉曼光谱 新型冠状病毒 刺突蛋白 快速检测 surface enhanced Raman spectroscopy SARS-CoV-2 spike protein rapid detection 
强激光与粒子束
2020, 32(6): 069001
Author Affiliations
Abstract
Research Center of Laser Fusion, CAEP, P.O. Box 919-987, Mianyang, Sichuan 621900, China
Target is one of the essential parts in inertial confinement fusion (ICF) experiments. To ensure the symmetry and hydrodynamic stability in the implosion, there are stringent specifications for the target. Driven by the need to fabricate the target required by ICF experiments, a series of target fabrication techniques, including capsule fabrication techniques and the techniques of target characterization and assembly, are developed by the Research Center of Laser Fusion (RCLF), China Academy of Engineering Physics (CAEP). The capsule fabrication techniques for preparing polymer shells, glow discharge polymer (GDP) shells and hollow glass micro-sphere (HGM) are studied, and the techniques of target characterization and assembly are also investigated in this paper. Fundamental research about the target fabrication is also done to improve the quality of the target. Based on the development of target fabrication techniques, some kinds of target have been prepared and applied in the ICF experiments.
Capsule fabrication Capsule fabrication Target characterization and assembly Target characterization and assembly Microencapsulation technique Microencapsulation technique Depolymerizable mandrel technique Depolymerizable mandrel technique White-light interferometry White-light interferometry 
Matter and Radiation at Extremes
2018, 3(3): 135
Author Affiliations
Abstract
1 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
2 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Department of Astronomy, Beijing Normal University, Beijing 100875, China
4 Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
5 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
6 INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China
7 Shanghai Institute of Laser Plasma, Shanghai 201800, China
8 Research Center for Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
9 National Laboratory on High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China
10 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China
11 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
collisionless shock electromagnetic field high power lasers laboratory astrophysics 
High Power Laser Science and Engineering
2018, 6(3): 03000e45
Author Affiliations
Abstract
1 Science and Technology Facilities Council, Rutherford Appleton Laboratory, UK
2 Scitech Precision Ltd, Rutherford Appleton Laboratory, UK
3 Kansai Photon Science Institute, QST, Kyoto, Japan
4 General Atomics, San Diego, USA
5 Research Center of Laser Fusion, CAEP, Mianyang, China
6 AWE plc, Aldermaston, UK
7 CIFS, Blackett Laboratory, Imperial College London, UK
high-power laser high-power laser-related laser components target design and fabrication. 
High Power Laser Science and Engineering
2018, 6(2): 02000e13
Author Affiliations
Abstract
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
As the basic conditions for laser inertial confinement fusion (ICF) research, the targets are required to be well specified and elaborately fabricated. Because of the characteristics of the targets, the research and fabrication process is a systematically tough task, which needs fundamental and deep insights into film deposition, mechanical machining, precise measurement and assembly, etc. As a result, knowledge of material science, physics, mechanical as well as electronics is a necessity for target researchers. In this paper, we give introductions to the state of art on target fabrication for ICF research at Research Center of Laser Fusion (RCLF) in China.
development ICF target fabrication 
High Power Laser Science and Engineering
2017, 5(1): 010000e5
Wenrong Wu 1,2,†Lie Bi 1,2Kai Du 1,2Juan Zhang 1,2[ ... ]Honglian Wang 1
Author Affiliations
Abstract
1 Research Center of Laser Fusion, CAEP, Mianyang 621900, China
2 Laboratory of Precision Manufacturing Technology, CAEP, China
The designs of inertial confinement fusion (ICF) targets, which field on ShenGuang III, are becoming more complex and more stringent in terms of assembly precision. A key specification of these targets is the spatial angle alignment accuracy. To meet these needs, we present a new spatial angle assembly method, using target part’s 3D model-based dual orthogonal camera vision, which is better suited for the flexible automation of target assembly processes. The two-hands structure micromanipulate system and dual orthogonal structure visual feedback system were investigated by considering the kinematics, spatial angle measuring, and motion control in an integrated way. In this paper, we discuss the measurement accuracy of spatial angle assembly method, which compared the real-time image acquisition with the redrawing 2D projection. The result shows that the assembly method proposed is very effective and meets the requirements of angle assembly accuracy, which is less than $1^{\circ }$. Also, this work is expected to contribute greatly to the advancement of other target microassembly equipments.
ICF target fabrication spatial angle target assembly 
High Power Laser Science and Engineering
2017, 5(2): 020000e9
Author Affiliations
Abstract
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
2 Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China
3 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
4 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
5 China Academy of Engineering Physics, Mianyang 621900, China
The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion. While, in contrast to the cylindrical hohlraums, the narrow space between the laser beams and the spherical hohlraum wall is usually commented. In this Letter, we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole (LEH) can dramatically improve the laser propagation inside the spherical hohlraums. In addition, the laser beam deflection in the hohlraum is observed for the first time in the experiments. Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs. Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.
Spherical hohlraum Laser propagation Cylindrical laser entrance hole Laser spot movement 
Matter and Radiation at Extremes
2016, 1(1): 2

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!